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Abstract

Strongly anisotropic diffusion equations require special techniques to overcome or reduce the mesh locking phenome-
non. We present a finite volume scheme that tries to approximate with the best possible accuracy the quantities that are of
importance in discretizing anisotropic fluxes. In particular, we discuss the crucial role of accurate evaluations of the
tangential components of the gradient acting tangentially to the control volume boundaries, that are called into play by
anisotropic diffusion tensors. To obtain the sought characteristics from the proposed finite volume method, we employ
a second-order accurate reconstruction scheme which is used to evaluate both normal and tangential cell-interface gradi-
ents. The experimental results on a number of different meshes show that the scheme maintains optimal convergence rates
in both L2 and H1 norms except for the benchmark test considering full Neumann boundary conditions on non-uniform
grids. In such a case, a severe locking effect is experienced and documented. However, within the range of practical values
of the anisotropy ratio, the scheme is robust and efficient. We postulate and verify experimentally the existence of a
quadratic relationship between the anisotropy ratio and the mesh size parameter that guarantees optimal and sub-optimal
convergence rates.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Diffusion equations with anisotropic (i.e. direction dependent) coefficients arise in many practical applica-
tions such as, for example, heat transfer, groundwater flow and contaminant transport, petroleum reservoir
simulations, Navier–Stokes equations, and so on. These problems are characterized by a diffusion coefficient
represented by a space dependent full rank tensor, which becomes diagonal if the reference system is aligned
with the principal directions of anisotropy [7]. This class of problems is also known as parameter dependent
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problems, the parameter in this case being the anisotropy ratio, i.e. the ratio between the smallest and largest
eigenvalues of the diffusion tensor [5]. Efficient numerical discretization of strongly anisotropic problems is
generally obtained by means of ad hoc, mesh dependent scheme modifications developed to overcome the
problem known as parametric locking. Locking is experimentally observed when the discretization error does
not decrease at the expected rate for limiting values of the parameter. This loss of convergence disappears for
sufficiently fine discretizations, but may involve costly or even unfeasibly large calculations [5]. The numerical
solution of this type of problems requires careful consideration of the errors that may be introduced by the
discretization scheme.

Several authors have devised various techniques with the aim of alleviating the locking problem. A number
of these studies concentrate on the development of schemes capable of handling anisotropic diffusion coeffi-
cients, without however specific investigation of the locking phenomenon [18,25–28]. Other authors are mainly
concerned with studies of scheme performance in the presence of locking. Within this category, we can men-
tion the recent work of Refs. [20,21], where a modification to the bilinear Galerkin scheme is introduced to
resolve the locking problem for small values of the anisotropy ratio. These types of modification (‘‘variational
crimes’’) may alter the consistency of the original scheme for the isotropic case. For this reason, factors tend-
ing to zero proportionally to the expected convergence rate of the scheme must be introduced to recover con-
sistency. This procedure, however, introduces errors that may not be negligible when working on a single
mesh. A review of the different schemes addressing the problem of anisotropy is found in Ref. [28]. A thorough
presentation of the locking phenomenon with formal definition of locking and locking free or robust schemes
is found in Ref. [5]. A completely different point of view is to try to adapt the domain or mesh or both to the
anisotropy of the problem [1,2]. This approach can always be used if the anisotropy ratio is constant. It is not,
however, the direction of our study, where we try to include as much as possible the anisotropy of the differ-
ential problem into the discretization operator. Other symptoms of locking can be identified by a consistent
growth of the asymptotic error constant as the anisotropy ratio tends to zero, even though the optimal order
of convergence may be maintained. Recent experimental evidence in the field of groundwater contamination
has shown that anisotropy ratios of the order of 10�3 can be easily obtained [32]. In these problems, the sit-
uation is complicated by the fact that non-uniform grids need to be employed and that the anisotropy ratio
and the principal directions of anisotropy are space dependent. We will thus concentrate on a practical range
of anisotropy ratios of 10�3–1 using the point of view of [1,2,18,28], but we will also conduct numerical exper-
iments for ratios up to 10�6 to investigate the phenomenon of locking.

We will focus on the numerical solution of the dimensionless anisotropic steady-state diffusion equation
� divðKruÞ ¼ f in X; ð1aÞ
u ¼ gD on CD; ð1bÞ
� n � Kru ¼ gN on CN; ð1cÞ
where K(x) is a 2 · 2 tensor field. The solution u(x) is defined for x in the polygonal domain X � R2, charac-
terized by a piecewise continuously differentiable boundary C that is split into two non-overlapping parts, CD

and CN, where conditions of Dirichlet and Neumann types are imposed. We assume that either CD or CN may
be empty and that C = CD [ CN. The diffusion coefficient K(x) can be represented by a 2 · 2 symmetric and
strictly positive definite real matrix with elements that are almost everywhere defined in X and belong to the
Sobolev space of bounded functions with bounded first derivatives W1,1(X) [3]. The other symbols in (1a)–(1c)
have the following meaning:

� f is the forcing term;
� n is the unit vector almost everywhere orthogonal to C and outward oriented from X;
� gD is the smooth scalar function, almost everywhere defined on CD that takes into account the Dirichlet

boundary conditions;
� gN is the smooth scalar function, almost everywhere defined on CN, that takes into account the Neumann

boundary condition. This function is taken explicitly dependent on the boundary edge normals n, i.e.
gN(x,n), to properly handle the case of domain corners.
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Under suitable assumptions on the regularity of f and the boundary functions gD and gN this model prob-
lem can be re-formulated in weak form, and the existence and uniqueness of the analytical solution can be
proved [34].

In this work, we consider the family of second-order accurate finite volume discretizations that is gen-
erally referred as diamond scheme (see Ref. [17] for a recent literature review). These schemes are designed
by locally approximating the diffusive flux balance for any mesh control volume [19]. In our variant, the
flux is defined by a careful combination of cell averages and vertex values of the solution. The cell averages
are the primary unknowns, while vertex values are obtained from cell averages by means of a Least
Squares reconstruction mechanism [15]. The reconstruction is of fundamental importance to achieve opti-
mal accuracy and, in advection–diffusion equations, needs to be employed in the approximation of both
diffusive and advective fluxes [9,10]. Despite their use in more complex applications [29], this type of
schemes may not appear to be competitive for the approximation of purely diffusive problems with respect
to other more standard approaches. In fact, the cost of the reconstruction algorithm makes the finite vol-
ume scheme computationally less efficient with respect to, for example, finite elements and finite differences.
On the other hand, the role of the reconstruction is crucial to obtain a reliable approximation of the nor-
mal fluxes [6,31,30]. In the presence of anisotropic diffusion tensors, approximation of the normal fluxes
requires accurate evaluation of both normal and tangential components of the cell-interface gradients.
Other recent developments also try to approximate the entire gradient as the adjoint of the divergence
operator [23,24] by simultaneously using primal and dual meshes [17,22]. Instead, we propose a modifica-
tion of the diamond cell approach that makes optimal use of the reconstruction algorithm to yield an accu-
rate discretization of tangential gradients, a key ingredient for achieving robustness of the numerical
scheme for limiting values of the anisotropy ratio.

The outline of the paper is as follows. In Section 2, we introduce the general notation and mesh
setting framework. In Section 3, we will discuss the derivation of the proposed scheme and point
out the importance of the tangential terms in the gradient approximations. Section 4 will contain
our numerical experiments, which are based on standard test cases developed to test the locking phe-
nomenon [5,20,21]. In particular, we will show that in the absence of tangential terms in the finite vol-
ume formulation the numerical solution can be obtained on a stretched domain, but with high
computational efforts. We will report numerical results obtained on a variety of grids, showing that
meshes aligned with the principal directions of anisotropy greatly enhance the robustness of the scheme
with respect to locking. Nonetheless, we will see that this scheme is robust in the sense of Ref. [5], on a
wide range of anisotropy ratios also for completely non-uniform meshes. Finally, we will show numer-
ically that the region of convergence of the method is defined by a quadratic relationships between the
anisotropy ratio and the mesh size parameter. Lastly, in Section 5, we discuss some final remarks and
draw the conclusions.
2. General setting, notations, and mesh regularity assumption

The mesh Th is a finite collection of non-overlapping and non-empty two-dimensional control volumes
formed by simplices (triangles, in our case) which are denoted by the letter ‘‘T’’ and indexed by a Latin sub-
script, e.g. i, j, k. For example, Ti is the ith control volume (cell) of the mesh Th ¼ fTig. According to the
definition given in Ref. [14], the parameter h that labels the mesh Th is called the mesh size, and is formally
given by the supremum of the mesh control volume diameters, h ¼ maxTi2Th diamTi. We assume that, for
every possible choice of h, Th covers the polygonal domain X � R2 in the sense that X ¼ [Ti2ThTi. The
edges are denoted by the letter ‘‘e’’ and labeled by a couple of Latin indices, e.g. eij. When eij is an internal
edge, two control volumes Ti and Tj, such that eij = oTi \ oTj, must exist. When eij is a boundary edge, the
first index, e.g. i, always refers to the unique control volume Ti such that eij 2 oTi \ C. The second index is
defined by a suitable boundary numbering system (like a sort of ghost cell). When dealing with an internal
edge, the symbols eij and eji denote the same edge and are considered only once (for example, by taking the
representative with i < j). The mesh vertices are denoted by the symbol ‘‘v’’ and indexed by Greek letters
(a,b,c).
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The development of this finite volume method requires the use of the following mesh entities:

� Th is the set of the control volumes (i.e., the mesh);
� Ehð¼ EI

h [ EB
h Þ is the set of all mesh edges, formed by the union of internal and boundary edges. The set EB

h is
also subdivided into
– ED

h is the set of boundary edges where a Dirichlet condition is imposed;

– EN
h is the set of boundary edges where a Neumann condition is imposed.

Clearly, EI
h \ EB

h ¼ ;, EB
h ¼ ED

h [ EN
h , and ED

h \ EN
h ¼ ;;

� Vhð¼VI
h [VB

h Þ is the set of all mesh vertices, formed by the union of internal and boundary vertices. The
set VB

h is also subdivided into

– VD
h is the set of boundary vertices where a Dirichlet condition is imposed;

– VN
h is the set of boundary vertices where a Neumann condition is imposed.

Clearly, VI
h \VB

h ¼ ;, VB
h ¼VD

h [VN
h , and VD

h \VN
h ¼ ;.

2.1. Basic geometric quantities

All the quantities related to Ti are consistently labeled by the same index i. For example, |Ti| is the area of
Ti, and xi is the position vector of the gravity center of Ti. Analogously, the quantities related to the mesh
vertex va are consistently labeled by the same index a. For example, xa is the position vector of va. We assume
that C has a counterclockwise orientation and label the boundary edge that precedes the vertex va by the minus
sign ‘‘�’’ and the boundary edge that follows va by the plus sign ‘‘+’’. The unit normal and tangential vectors
on these edges are n�a and t�a . The data associated to the boundary vertex and its two incident boundary edges
e�a are denoted by g�a and gþa . For convenience, we set g�a ¼ 0 if va 2VI

h [V D
h and unify the formulation for

internal and boundary vertices. Thus,
g�a ¼
0 if va 2VI

h [VD
h ;

gNðxa; n
�
a Þ if va 2VN

h :

(

The quantities related to eij are consistently labeled by ij and are:

� |eij| is the length of eij 2 Eh;
� xij is the position vector of the midpoint center of eij;
� nij is the unit vector orthogonal to eij and oriented from Ti to Tj if eij 2 EI

h, outward of X if eij 2 EB
h ;

� tij is the unit vector parallel to eij and such that (tij,nij) forms a counterclockwise orthogonal reference sys-
tem for R2;
� ~xij is the position vector of the orthogonal projection of xi on the line containing the edge eij 2 Eh;
� ~kij

a is the coordinate of ~xij with respect to va 2 eij, and given by ~kij
a ¼ 1� j~xij � xaj=jeijj; the baricentric coor-

dinates of ~xij are such that 0 6 ~kij
a 6 1 when ~xij 2 eij.

� hij ¼ ðexij � xiÞ � nij is the distance between the gravity center of Ti and the edge eij;
� Hij = (xj � xi) Æ nij = hij + hji is the effective distance between the gravity centers of Ti and Tj when eij 2 EI

h

(Fig. 1).
Fig. 1. The diamond cell geometry for edge flux calculation.
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The scheme formulation is expressed by using summations over stencils of cells, edges, and vertices (Fig. 2).
The set ri indicates the cells sharing an edge with Ti; r0i indicates the ‘‘ghost’’ cells sharing an edge with Ti; and
ra indicates the cells surrounding vertex va. Thus, eij is a boundary edge of Ti if j 2 r0i while it is the internal
edge shared by Ti and Tj if j 2 ri. The index j running on the set ri [ r0i labels all the edges eij forming the
boundary of Ti. Summations may also be taken over index sets of mesh vertices. We denote by mi the set of
vertices of the cell Ti, and by mij = {a,b} the set of vertices of the edge eij. If a,b 2 mij we can write |eij| = |xb � xa|
because va and vb are the two vertices of eij.

2.2. The cell average operator

The cell average operator is the vector-valued functional Ah : L1ðXÞ7!RNT such that
AhðuÞji ¼
1

jTij

Z
Ti

uðxÞ dV for u 2 L1ðXÞ and 0 6 i 6 NT:
Throughout the paper, we will also use the shortcut AiðuÞ ¼AhðuÞji.

Remark 1. The cell average operator Ah could be alternatively defined as follows. Let P 0ðThÞ be the subspace
of the Hilbert space L2(X) consisting of the functions having constant restriction on the control volumes of the
triangulation Th. The functional operator Ah is then the orthogonal projector from L2(X) onto P 0ðThÞ. The
dimension of P 0ðThÞ is equal to NT and the identification between P 0ðThÞ and RNT can be readily established.
2.3. Mesh regularity assumption

The finite volume method presented in this paper approximates the solution of (1a)–(1c) by using the family
of grids fThg. Each element of fThg, distinguished by the label h, is a regular partition of the domain X; we
have the following:

Assumption 2 (Mesh regularity)

(i) All the triangulations Th for h 6 h0 are conformal in accordance with the definition of Ref. [14].
(ii) All the triangulations Th for h 6 h0 are weakly acute; i.e., all the mesh angles are less than or equal to

p/2.
The first item of the regularity assumption is usually met in finite element analysis and is quite reasonable in
finite volume formulations. Its aim is to prevent the use of degenerate triangles, either too obtuse or too acute,
in the approximation process for h! 0. The second item of the regularity assumption ensures that the orthog-
onal projection of the gravity center of any control volume Ti onto each one of the edges eij 2 oTi is an internal
point of eij. Weakly acute triangulations always satisfy this property, but more general partitions may also be
considered even if obtuse triangles are present. For simplicity, we assume that any member of the family
fTh for h 6 h0g is weakly acute, thus accepting at most the case where ~xij coincides with one of the vertices
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of edge eij. Much stronger assumptions are needed to be able to demonstrate the coercivity (and thus the non-
singularity) of the finite volume operator [15,16]. However, in practical calculations the above mesh regularity
assumptions are generally enough. On the other hand, the proposed scheme will work also on non-conforming
grids, as discussed in Ref. [16].

3. Finite volume formulation

The first step of the derivation of the proposed cell-centered finite volume method for the solution of (1a)–
(1c) is to reformulate the governing equation (1a) on the generic cell Ti in integral (also said ‘‘conservative’’)
form. Applying the Gauss divergence theorem, we obtain the set of balance equations
�
Z

oTi

n � Kru dS ¼
Z

Ti

f dV for Ti 2Th: ð2Þ
Let uh 2 RNT be the approximation of the NT-sized vector of cell averages AhðuÞ. Thus, uh can also be inter-
preted as the piece-wise constant function in L2(X) whose restriction on Ti approximates AiðuÞ (see the remark
at the end of the Section 2.2). The restriction of uh on Ti is denoted by ui. The cell-centered finite volume dis-
cretization mimics Eqs. (2) by introducing a set of discrete balance equations that correlate each ui to the bal-
ance of the numerical fluxes across control volume boundary oTi:
1

jTij
X

j2ri[r0i

jeijjGijðuhÞ ¼ si for Ti 2Th; ð3Þ
where Gij(uh) denotes the numerical integral of the diffusive flux on the control volume edge eij 2 oTi and si is
the cell-average of the source term f in (1a).

The functional dependence of Gij(uh) on the cell average approximation vector uh must be carefully devised
in the cell-centered finite volume framework in order to provide a proper formulation of the numerical discret-
ization method. To this aim, let G�ijðuhÞ denote the discrete constant gradient that we assume to be uniquely
defined on edge eij 2 Eh. The numerical diffusive flux is then
GijðuhÞ ¼
�nij � KijG

�

ijðuhÞ if eij 2 EI
h [ ED

h ;

g N
ij if eij 2 EN

h :

(
ð4Þ
The first part of the numerical flux formula is derived by approximating the co-normal derivative of u that
appears in (2), n Æ K$u, by its discrete version nij � KijG

�

ijðuhÞ. To this purpose, we apply the second-order
mid-point quadrature rule to the integral (2) decomposed on every edge eij 2 oTi and introduce a suitably de-
fined mean diffusion tensor Kij on eij. Convenient choices for the mean edge-based diffusion tensor are
Kij = K(xij) or the line-integral average
Kij ¼
1

jeijj

Z
eij

KðxÞ dS;
that has to be interpreted component-wise. The second part of the numerical flux formula accounts for Neu-
mann boundary conditions by considering the function gN(x,n(x)) of the right-hand side of (1c) on the bound-
ary edge eij 2 oTi \ EN

h . In analogy with the definition of the components of the conductivity tensor, the
discrete flux term gN

ij can be given by gN
ij ¼ gNðxij; nijÞ or
gN
ij ¼

1

jeijj

Z
eij

gNðx; nðxÞÞ dS:
3.1. Approximation of the solution gradient at mesh edges

The first step for the formulation of the discrete gradient G�ijðuhÞ for internal and Dirichlet-boundary edges
consists in defining the one-sided gradient GijðuhÞ associated to the edge eij from the interior of triangle Ti. At
every internal edge eij 2 EI

h, the discrete gradient G�ijðuhÞ is uniquely calculated by averaging the two one-sided
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contributions that are built within cells Ti and Tj sharing eij. At every boundary edge of Dirichlet type eij 2 ED
h ,

the discrete gradient G�ijðuhÞ coincides with the gradient defined within the (unique) cell Ti to which edge eij

belongs. Second order accuracy of the finite volume scheme is achieved by ensuring that the one-sided gradi-
ents GijðuhÞ are exact when applied to a linear function. To this aim, we calculate Gij(uh) using a suitable inter-
polation of the cell-average ui and of the solution approximations ua and ub at the vertices va and vb of edge eij.
Note that ui is a second-order accurate approximation of the solution value at the center of gravity xi of cell Ti.
Instead, the vertex approximations ua and ub are provided by the formally second-order accurate reconstruc-
tion algorithm that will be described in Section 3.2. The formula for the one-sided gradient is then developed
by approximating the cell-average of the solution gradient $u on triangle Tiab defined by the gravity center of
Ti and the vertices of edge eij (see Fig. 3):
GijðuhÞ �
1

jTiabj

Z
Tiab

ru dV :
Application of the Gauss–Green lemma yields:
1

jTiabj

Z
Tiab

ru dV ¼ 1

jTiabj

Z
oTiab

nu dS;
where oTiab = eia [ eib [ eij. The three line integrals on eia, eib, and eij are then approximated by means of the
trapezoidal rule, and, taking into account that |eia|nia + |eib|nib + |eij|nij = 0 and |Tiab| = |eij|hij/2, we obtain:
GijðuhÞ ¼
1

hij
ua nij þ nia

jeiaj
jeijj

� �
þ ub nij þ nib

jeibj
jeijj

� �
� uinij

� �
; ð5Þ
where the three unit normal vectors nia, nib, and nij point out of the integration domain as shown by Fig. 3. The
normal and tangential components of the one-sided gradient, denoted by G

ðnÞ
ij ðuhÞ and G

ðtÞ
ij ðuhÞ, are the projec-

tion of the right-hand side of (5) onto the mutually orthogonal directions of the unit vectors nij and tij. Thus,
we obtain:
GijðuhÞ ¼ G
ðnÞ
ij ðuhÞnij þ G

ðtÞ
ij ðuhÞtij; ð6Þ
where
G
ðnÞ
ij ðuhÞ ¼ nij �GijðuhÞ ¼

1

hij

~kij
a ua þ ~kij

b ub � ui

h i
; ð7aÞ

G
ðtÞ
ij ðuhÞ ¼ nij �GijðuhÞ ¼

1

hij
~lij

a ua þ ~lij
b ub

h i
; ð7bÞ
Fig. 3. The edge geometry for the definition of the one-sided gradient GijðuhÞ.
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and:
~kij
a ¼ nij � nij þ nia

jeiaj
jeijj

� �
¼ 1� jeiaj

jeijj
cos â

� �
; ð8aÞ

~kij
b ¼ nij � nij þ nib

jeibj
jeijj

� �
¼ 1� jeibj

jeijj
cos b̂

� �
; ð8bÞ

~lij
a ¼ tij � nia

jeiaj
jeijj
¼ �1; ð8cÞ

~lij
b ¼ tij � nib

jeibj
jeijj
¼ þ1: ð8dÞ
As shown in Fig. 3, the angles â and b̂ in (8a) and (8b) satisfy the conditions nij � nia ¼ cosðp� âÞ and
nij � nib ¼ cosðp� b̂Þ. Note that ~kij

a and ~kij
b are the baricentric coordinates of exij 2 eij (the orthogonal projection

of the cell center xi onto edge eij) with respect to the vertices va and vb. As a result, it is easy to recognize that
Eq. (7a) actually contains the linear interpolation of the vertex values ua and ub at ~xij, as given by:
uij ¼ ~kij
a ua þ ~kij

b ub: ð9Þ
In view of the second mesh regularity assumption, the baricentric coordinates of ~xij are non-negative numbers
bounded from above by 1 and, consequently, uij is a convex interpolation of ua and ub. Finally, by substituting
(7a), (7b) and (8a)–(8d) in (6), and using the definition given in (9), we obtain the final formulation of the one-
sided gradient at eij within Ti:
GijðuhÞ ¼
uij � ui

hij
nij þ

ub � ua

jeijj
tij: ð10Þ
3.1.1. Internal edges
A unique definition of the numerical edge flux is required to obtain a conservative formulation of the

numerical diffusive flux Gij(uh). To this aim, given an internal edge eij, the two contributions arising from
the one-sided numerical gradients, GijðuhÞ built in Ti and GjiðuhÞ built in Tj, are averaged by:
G�ijðuhÞ ¼ W ijGijðuhÞ þ W jiGjiðuhÞ; ð11Þ
where the non-negative weights are:
W ij ¼ 1� W ji ¼
hij

Hij
:

This results in the following definition of the numerical flux:
GijðuhÞ ¼
uj � ui

H ij

� �
jðnÞij þ

ub � ua

jeijj

� �
jðtÞij ;
where the coefficients jðnÞij and jðtÞij contain the normal and tangential projections of the co-normal vector Knij,
i.e.:
jðnÞij ¼ nij � Kijnij;

jðtÞij ¼ ~kij
a þ ~kji

b � 1
� � jeijj

H ij
nij � Kijnij þ nij � Kijtij:
Remark 3. The tangential term disappears if K = aI, i.e. K is isotropic. It is the tangential term that bears the
responsibility for the approximation of the anisotropic flux term. Accuracy of the vertex reconstruction
algorithm is thus of fundamental importance to achieve full accuracy of the tangential component of the
numerical flux and thus good performance for strongly anisotropic diffusion tensors.
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3.1.2. Dirichlet boundary edges

When eij 2 ED
h , the edge gradient G�ijðuhÞ is set equal to the unique one-sided edge gradient GijðuhÞ. Thus, we

have
G�ijðuhÞ ¼
uij � ui

hij
nij þ

ub � ua

jeijj
tij;
so that
GijðuhÞ ¼ �
ui

hij
jðnÞij þ

jðtÞb;ijub � jðtÞa;ijua

jeijj
:

Tangential contributions involve the boundary coefficients
jðtÞa;ij ¼ �
~kij

b jeijj
hij

nij � Kijnij � nij � Kijtij;

jðtÞb;ij ¼ þ
~kij

a jeijj
hij

nij � Kijnij þ nij � Kijtij:
Since at least one of the two boundary vertices va and vb is of Dirichlet type, we may argue that the relation
ua ¼ gD

a or ub ¼ gD
b (or both, simultaneously) must be true. We remark that the tangential component of the

diffusive flux on the boundary edge is proportional to ub � ua. This clearly implies that this flux component is
completely determined by the Dirichlet boundary function gD(x) when both ua ¼ gD

a and ub ¼ gD
b are used.

3.2. Vertex reconstruction and Neumann boundary conditions

To complete the description of this finite volume method, we must still explain how the vertex value ua,
which is defined for every va 2Vh, depends on the approximate cell averages uh. If va is a Dirichlet boundary
vertex, we set ua = gD(xa). For internal and Neumann boundary vertices, we approximate the solution by a
weighted mean of the cell averages surrounding the vertex. Careful consideration must be given to the case
of Neumann boundary conditions, as they play a crucial role in the investigation of the mesh locking phenom-
enon. In general, we look for a linear Least Squares approximation of the cell-averaged data set
{(xk,uk),k 2 ra} on the co-volume Va ¼

S
k2ra

Tk. This linear approximation takes on the form
Raðx; uhÞ ¼ aþ b � ðx� xaÞ for x 2Va:
The coefficients (a,bT)T are the minimizers of the Least Squares functional
Jða; bTÞ ¼
X
k2ra

W k½aþ b � ðxk � xaÞ � uk�2; ð12Þ
with W k ¼ jTkj=
P

s2ra
jTsj. The minimization takes place over R3 if va is an internal vertex. This procedure is

thoroughly discussed in Ref. [15], and we refer the reader to this paper for the evaluation of the reconstruction
weights in this case.

However, we need to develop a generalization of this strategy for a more accurate reconstruction of the
solution value at a vertex where a Neumann boundary condition must be imposed. To this aim, starting from
the development of Ref. [11], we implement condition (1c) in our formulation by enforcing the linear
constraint
n�a � ðKabÞ ¼ gNðxa; n
�
a Þ;
on the two boundary edges to the left and to the right of va and setting Ka = K(xa). The reconstruction weights
are provided by the minimization of the Least Squares functional (12) with respect to the unknown variables
(a,bT)T over the constraint region
O ¼ fða0; b0;TÞT 2 R3 such that n�a � ðKab0Þ ¼ g�a g: ð13Þ
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The implementation of the Least Squares problem proceeds as follows. Let us denote by Na the cardinality of
the set ra. We introduce the Na-sized vector ua ¼ ðu1; . . . ; uNaÞ

T, whose components are the cell averages of the
cells sharing vertex va. We construct the diagonal matrix K ¼ diagðW 1; . . . ;W NaÞ using the coefficients of (12),
and the Na · 3 rectangular matrix A ¼ ½1; dx; dy�, this latter being defined by the three Na-sized column vec-
tors 1 = (1,. . .,1)T, dx ¼ ðx1 � xa; . . . ; xNa � xaÞT, and dy ¼ ðy1 � ya; . . . ; yNa

� yaÞ
T, where (xk,yy) for

k = 1, . . . ,Na are the coordinates of the gravity center of cell Tk. We also consider the matrix B to conveniently
incorporate the Neumann constraints (13). The definition of B requires some special care as two different cases
must be taken into account: case (i), the two normal vectors n�a are parallel, i.e. nþa ¼ n�a , and case (ii), the two
normal vectors n�a are pointing to two different directions. The constraint matrix B is given by
case ðiÞ : B ¼
0

Kanþa

� �
; case ðiiÞ : B ¼

0 0

Kanþa Kan�a

� �
:

For polygonal domains, case (i) always occurs when va is an interior point of a straight boundary, while case
(ii) occurs when va is a corner connecting two distinct straight boundary lines. Case (ii) also covers the situ-
ation in which va is a boundary corner point but belongs to a single triangular cell with two boundary edges
both incident to this vertex. For a more general domain shape, the boundary has to be properly approximated
by the sequence of triangulations built for h! 0, so that polygonal numerical domains are obtained. It is
worth noting that, in this approximation process, case (i) is the limiting situation that takes place when the
boundary is locally regular, i.e. at least continuously differentiable, at va. Instead, case (ii) occurs when the
boundary is only Lipschitz continuous at va, i.e. when va is a domain corner.

The constrained least square procedure yields the augmented system
ATKA B

BT 0

" #
ða; bTÞT

l

" #
¼ ATKua

ga

" #
; ð14Þ
where l is the vector of Lagrangian multipliers for the Neumann constraints and ga is the vector of edge-based
data g�a . Consistently with the double definition of B, we take l = (l+) and ga ¼ ðgþa Þ in case (i) and

l = (l+,l�)T and ga ¼ ðgþa ; g�a Þ
T in case (ii). It is easy to see that A is a maximum rank matrix because mesh

assumption 2-(ii) implies that the cell centers cannot be all simultaneously collinear with vertex va. Thus, ma-
trix ATKA must have maximum rank and is non-singular. Let us denote by K the (non-unique) matrix whose
columns are a basis for the kernel of BT. By definition, K is a maximum rank matrix satisfying BTK ¼ 0.
From the assumption that the mesh is weakly acute it follows that also the projected matrix KTATKAK
is non-singular. From this last consideration and since BT is by definition a maximum rank matrix for both
cases (i) and (ii), the non-singularity of the system matrix in (14) is readily deduced [13].

The solution of the augmented system (14) for the unknown a ¼ Raðxa; uhÞ ¼ ua can be formally expressed
by the null space formulation. This approach allows us to write ua as a weighted average of the cell-centered
data ua and the edge-based data ga. The set of cell-centered and boundary edge weights are denoted by {Wa,k}
and fW �

a g, respectively. Taking W �
a ¼ 0 if va is an internal vertex and W þ

a ¼ W �
a if va is a Neumann vertex in

case (i) makes it possible to derive a single reconstruction formula, which reads as
ua ¼

P
k2ra

W a;kuk þ W �
a g�a þ W þ

a gþa for va 2VI
h [VN

h ;

gDðxaÞ for va 2VD
h :

8<: ð15Þ
We conclude this section by pointing out that the choice of the weights in (15) is not unique and different tech-
niques, still providing second-order accuracy, may be envisaged. For example, in Ref. [10] an alternative meth-
od is proposed that does not rely on the Least Squares technique and ensures that the reconstruction weights
are uniformly bounded in the open interval (0,1) for every h.

3.3. Source term contribution

The discretization of the right-hand side source term f in (1a) is taken into account by the NT-sized vector
s = {si}. The components of s are estimated by averaging the right-hand side analytical source function f(x) on
Ti. We have
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si ¼
1

jTij

Z
Ti

f ðxÞ dV ¼ 1

3

X
a2mi

f ðxaÞ:
3.4. The finite volume linear system

The final system of linear equations is written as:
Guh ¼ sþ g; ð16Þ

where G = {Gij} is the NT · NT stiffness matrix, uh ¼ fuig 2 RNT is the vector of approximate cell averages,
s ¼ fsig 2 RNT is the source vector defined above, and g ¼ fgig 2 RNT is the vector of boundary conditions.
The matrix G and the vector g are built in the following assembly process. First, we express uij as a linear com-
bination of vertex values by substituting (15) into (9). Then, we use these expressions in (10) to obtain the one-
sided gradient GijðuhÞ for every Ti 2Th and j 2 ri [ r0i. Note that the resulting stencil is formed by the gravity
centers of all triangles sharing va and all triangles sharing vb. The gradient GijðuhÞ is, thus, defined in terms of
cell averages of the elements of this stencil. In accordance with (11), we define the gradient G�ijðuhÞ by averag-
ing the two-one sided gradients GijðuhÞ and GjiðuhÞ. On the boundary, the gradient G�ijðuhÞ coincides with the
one-sided gradient GijðuhÞ. Finally, we reformulate the discrete flux balance, i.e. Eq. (3), as
1

jTij
X

j2ri[r0i

jeijjGijðuhÞ ¼ ðGuh � gÞji ¼ si for Ti 2Th;
by employing the expressions of the internal and boundary edge gradients in the definition of the numerical
flux (4). Further details of this assembly process as well as the formulas for G = {Gij} and g = {gi} are reported
in Ref. [9]. The resulting non-symmetric linear system arising from this discretization is solved by using the
routine MA41 [4] from the HSL collection of FORTRAN linear algebraic solvers for sparse matrices.
4. Numerical experiments

The performance of the proposed finite volume method is evaluated by focusing on the numerical solution
of the parametric model problem [5,20,21]:
� o
2u

ox2
� � o

2u
oy2
¼ f ðx; yÞ for ðx; yÞ 2 ð0; 1Þ 	 ð0; 1Þ; ð16aÞ

uðx; yÞ ¼ gDðx; yÞ for ðx; yÞ 2 CD; ð16bÞ

� nx
ou
ou
� �ny

ou
oy
¼ gNðx; yÞ for ðx; yÞ 2 C N; ð16cÞ
where the diffusion parameter � is a positive real number in the range [10�6,1], and nx ad ny are the components
of n. The definition of the boundaries CD and CN depends on the particular test case that we will consider.
Note that problem (16a)–(16c) is equivalent to (1a)–(1c) with an anisotropic conductivity tensor
K ¼
1 0

0 �

� �
: ð17Þ
For a non-diagonal tensor, model problem (16a)–(16c) represents (1a)–(1c) on a rotated reference system
aligned with the principal directions of anisotropy (the eigenvectors of K). The performance of the proposed
method in solving (16a)–(16c) will be investigated by evaluating the rate of convergence on a sequence of suc-
cessively refined meshes. We will consider three different grid families that will include uniform, quasi-uniform,
and non-uniform triangulations, respectively. The mesh data structures are managed by P2MESH [8], a C++

public domain library designed for fast and efficient implementation of partial differential equation solvers.
The base grids for the different families are shown in Fig. 4. The uniform grid family starts by a 4 · 4 partition
of X into equally-shaped squares. Each square is then divided by its diagonals into four sub-triangles, as
shown by Fig. 4 (left). The computational meshes at the next refinement levels are generated by halving the



Fig. 4. Base computational grids for numerical experiments: 4 · 4 · 4-sized uniform regular mesh (left), 8 · 8 · 2 quasi-uniform mesh
(middle), and strictly acute unstructured mesh (right).
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partitioning in both coordinate directions and then subdividing the grid squares into four equally-shaped sub-
triangles. The quasi-uniform base grid is obtained as follows. The domain is first uniformly subdivided into
8 · 8 rectangles. The y-coordinate of the nodes along each horizontal line are changed to form non-uniform
intervals along y having length proportional to the numbers {1,4,2,3,1,3,2,4}, respectively. The resulting tri-
angulation (shown in Fig. 4, middle) is obtained by choosing the south-west north-east diagonal of each rect-
angle. Alternatively, we may consider the quasi-uniform base grid generated by changing the x-coordinates of
the nodes accordingly to the previously mentioned rule. The non-uniform base grid is shown in Fig. 4 (right),
and consists of 272 triangular cells, 430 edges, 159 vertices, and 44 boundary edges and vertices. All the angles
are acute, thus, satisfying the mesh regularity assumptions. The refinement process for both the quasi-uniform
and the non-uniform families progresses by connecting together the midpoints of the edges of each triangle.
This ensures that the mesh size parameter is halved at every level and that the newly generated triangles main-
tain the same aspect ratio of the original ones.

We will also find it convenient to work with the equivalent stretched problem given by the y-scaled version
of (16a)–(16c). This scaled version relies on the change of variables
x̂ ¼ x and ŷ ¼ y=
ffiffi
�
p
: ð18Þ
Thus, we look for the the solution ûðx̂; ŷÞ of the Poisson equation
� o
2û

ox̂2
� o

2û
oŷ2
¼ f̂ ðx̂; ŷÞ for ðx̂; ŷÞ 2 X̂; ð19Þ
in the stretched domain X̂ ¼ ð0; 1Þ 	 ð0; 1=
ffiffi
�
p
Þ under suitably scaled Dirichlet and Neumann boundary con-

ditions. The equivalence of the two formulations is guaranteed by taking f̂ ðx̂; ŷÞ ¼ f ðx; yÞ when the coordinate
pairs ðx̂; ŷÞ and (x,y) are related by (18). This equivalence implies that ûðx̂; ŷÞ ¼ uðx; yÞ.

4.1. Description of the test cases

According to the classification suggested in Ref. [21], we consider the following three test cases:

Case A: Dirichlet boundary data with CN = ; and
u ¼ gD on CD ¼ fðx; yÞjx ¼ 0; 1 or y ¼ 0; 1g:

Case B: mixed Dirichlet–Neumann boundary data with
u ¼ gD on CD ¼ fðx; yÞjx ¼ 0 or y ¼ 0g;
� n � Kru ¼ gN on CN ¼ fðx; yÞjx ¼ 1 or y ¼ 1g;
Case C: (nearly) pure Neumann boundary data with
u ¼ gD on CD ¼ fðx; yÞj1� h 6 x 6 1; y ¼ 1 or x ¼ 1; 1� h 6 y 6 1g;
� n � Kru ¼ gN on CN ¼ C n CD:
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Test Case C originally considers only the Neumann condition, i.e. CD = ;, leading to a singular discrete
Laplacian operator. The insertion of the modified Dirichlet condition on the two boundary edges indicated
above is used to remove this singularity. Note that the length of these two edges tends to zero as h! 0.

As pointed out in Ref. [21], a parametric error amplification, i.e. the locking effect, may arise for small val-
ues of � when solving model problem (16a)–(16c). The error amplification may take place due to the asymp-
totic behavior of the solution in the limit for �! 0. In particular, the existence of two possible asymptotic
states, which are called cool and hot and have different main directions of diffusion, is conjectured [20,21].
The cool state is induced by the boundary data of type A and B, so that diffusion takes place along the direc-
tion of high conductivity not affected by the parameter �. Conversely, the hot state is induced by the boundary
data of type C. In this second case, diffusion occurs mainly along the direction of low conductivity, which is
depressed by �. As discussed in Ref. [21], this situation may be difficult to be treated numerically because of the
locking effect.

We test the behavior of the present finite volume method by using the analytical solution [5]:
uðx; yÞ ¼ expð�2p
ffiffi
�
p

xÞ sinð2pyÞ: ð20Þ
The solution (20) is parametrically dependent on � in the x-direction so that the corresponding forcing
term is null, i.e. f = 0. The presence of � in (20) is crucial because propagation of information along
the low conductivity direction becomes dominant for very small values of the parameter. In this case,
severe locking effects have been reported, particularly in the approximation of the solution of Case C
[5,20,21].

Locking effects will be mainly investigated for the proposed finite volume method by reporting experimental
convergence rates. These rates are measured by means of the relative solution error calculated using L2-norms:
Eh ¼
kuh �AhðuÞkh

kukL2ðXÞ
¼

P
Ti2Th

jTijjui �AiðuÞj2
� �1

2

kukL2ðXÞ
; ð21Þ
and the relative gradient error calculated using H1-seminorms:
EG;h ¼
kGhðuhÞ �AhðruÞkh

jujH1ðXÞ
¼

P
Ti2Th

jTijjGi �AiðruÞj2
� �1

2

jujH1ðXÞ
: ð22Þ
The value of Eh is a measure of the approximation error of the cell averages of the solution, while EG;h

measures the error of the approximation of the solution gradient. The error EG;h is defined in (22) by com-
paring the piecewise-constant finite volume gradient GhðuhÞ ¼ fGig 2 P 0ðThÞ with the cell average of the
solution gradient AhðruÞ ¼ ðAhðou=oxÞ;Ahðou=oyÞÞ 2 P 0ðThÞ. The value of Gi is calculated by taking the
gradient of the plane interpolating the numerical solution at the three vertices of Ti. The rate of conver-
gence is measured by comparing the errors at two consecutive mesh levels with mesh parameters h and
h/2.

All the convergence rates are graphically presented in Figs. 5–8 as log–log plots of the error norms (L2 on
the left, H1 on the right) versus the characteristic mesh size h. In each plot, the values of � used to obtain the
error curves are labeled by the symbols listed just above the figure captions. Since this finite volume method is
formally second-order accurate, the convergence rates are expected to be Oðh2Þ for the L2 norm and OðhÞ for
the H1 seminorm. The actual order of accuracy is reflected by the slopes of the experimental error curves, and
can be approximately evaluated by comparison with the ‘‘theoretical’’ first- and second-order slopes repre-
sented in the bottom-left corner of each graph.

Two are the symptoms that characterize mesh locking effects for decreasing �: convergence curves moving
upward, denoting an increase of the error constant, and flat or nearly flat error curves, revealing a loss in the
expected convergence rates. The behavior of the latter case actually describes a pre-asymptotic convergence
regime [5]. Eventually, the expected rates would be observed if sufficiently small values of h were used, leading,
however, to possibly unfeasible calculations.
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Fig. 5. Stretched domain; Test Cases A–C: error curves for the regular mesh partition of X̂ ¼ ð0; 1Þ 	 ð0; 1=
ffiffi
�
p
Þ: the finite volume method

does not include the tangential gradient contributions to the numerical edge flux. Note that hx represents the value of h along the
(unstretched) x-direction.
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4.2. Discussion of results

4.2.1. Results on stretched domain

In the isotropic case K = aI, where I is the 2 · 2 identity matrix and a a real positive number, only the nor-
mal component of the gradient (10) intervenes in the finite volume discretization. Instead, in the anisotropic
case, the additional contribution of the tangential term is essential to maintain the consistency of the scheme.
The absence of this term would compromise the convergence of the sequence of approximate solutions when
the meshes are refined. When K has the form (17), one may solve the equivalent isotropic problem on the
stretched domain [33]. This approach simplifies the flux calculations because the tangential terms can be dis-
carded. We study the performance of this strategy by employing transformation (18) and solving Eq. (19) by
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Fig. 6. Uniform mesh; Test Cases A–C: error curves relative to the complete finite volume scheme for the domain X = (0,1) · (0,1).
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uniformly triangulating the deformed domain. The problem with this approach is that the number of mesh
control volumes covering the stretched computational domain significantly increases if cell aspect ratio must
be maintained. Denote by r ¼ 1=

ffiffi
�
p

the stretching factor. It is easy to see that for the uniform and quasi-
uniform mesh families the number of cells of the scaled mesh is exactly equal to r times the number of cells
of the mesh covering the original domain X. This relationship is only approximate for the non-uniform trian-
gulation family and our chosen range of variation of � corresponds to values of r between 1 and 1000. To
avoid complications on the resulting mesh, we do not experiment with non-integer stretching factors. For this
reason, the plots of Fig. 5 do not show the results for � = 10�1 and 10�3. The most anisotropic cases that we
consider in our simulations, i.e. � = 10�4 and � = 10�6, are rescaled into the isotropic form yielding meshes
with a dimension from one-hundred to one-thousand times larger than that of the original meshes. Table 1
reports the value of some characteristic topological elements of the uniform base mesh for the experimented
diffusion parameters � and stretching factors r. It is clear from this table that the size of the meshes involved in
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Fig. 7. Quasi-uniform mesh; Test Cases A–C: error curves relative to the domain X = (0,1) · (0,1). The mesh is obtained by moving the y-
coordinates of the nodes of the uniform subdivision of X to form non-uniform intervals along y having length proportional to the numbers
{1,4,2,3,1,3,2,4}.
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these calculations quickly becomes impractical. In particular, note that in the case K = 10�6 the mesh obtained
after the second refinement has 1,024,000 triangles, which is very close to the upper limit of the computers
available to us. This is reflected by the convergence curves having fewer experimental points as �! 0.

The results of the simulations are shown in Fig. 5. We maintain consistency of the plot scales throughout all
the test problems so that all the graphs are directly comparable one to the other. Thus, we have plotted on the
x-axis the value of h along the unstretched x-direction, i.e. hx. The mesh size parameter of the stretched
y-direction is hy = rhx. The obtained convergence rates are very close to the expected values for both error
norms (21) and (22). A small locking effect is perceived by the increasing error constant. This behavior
may indicate that the stretching factor of the domain does not exhaust all the numerical difficulties connected
with anisotropy. We should point out that this approach cannot be used in the case of spatially varying r.



Fig. 8. Non-uniform mesh; Test Cases A–C: error curves for the non-uniform mesh partition of the domain X = (0,1) · (0,1). Note the
dramatic loss of accuracy due to the locking effect for Case C.

Table 1
Stretched domain

� r Nx Ny NT Ne Nv NB
e

1 1 4 4 64 104 41 16
10�2 10 4 40 640 1004 365 88
10�4 100 4 400 6400 10,004 3605 808
10�6 1000 4 4000 64,000 100,004 36,005 8008

Characteristics of the base meshes for different values of diffusion ratio � and stretching factor r; Nx and Ny are the number of partitions
along the ‘‘X’’- and ‘‘Y’’-axis, respectively, NT is the number of triangles of the mesh, Ne the number of edges, Nv the number of vertices,
and NB

e the number of boundary edges (which is equal to the number of boundary vertices).
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Note that these results have been obtained on the uniform mesh. The results on the other grid families are
similar and for this reason are not reported here. From these observations, we may conclude that this strategy,
although feasible in some cases, is not computationally efficient. We prefer to solve the original unstretched
problem and exploit the fact that our scheme naturally yields an accurate discretization of both normal
and tangential gradients.

4.2.2. Results on uniform and quasi-uniform meshes

The numerical results on the uniform meshes are reported in Fig. 6. The scheme seems to work optimally in
terms of convergence rates for all test cases and both L2-norm and H1-seminorm. A small locking effect is vis-
ible in Case C, where a slight increase in the error constant occurs. This yields a deterioration of the L2-norm
error by a factor of about 5 going from the isotropic to the most anisotropic case. The reason for the optimal
convergence of the scheme may be attributable to the particular geometry of the mesh. As a matter of fact,
independently of the refinement level, triangle edges parallel to the coordinate directions of anisotropy are
always present. Furthermore, the triangles are all constructed from squares using the two main diagonals.
The resulting symmetry of the triangulation is presumably responsible of error cancellations occurring within
the discrete operator that could explain the behavior of the method.

The same numerical performance can be observed for the convergence on the quasi-uniform grid family
generated by the base mesh of Fig. 4 (middle). The convergence curves are shown in Fig. 7. The only difference
from the previous case is the initial error value, which is smaller for the quasi-uniform case by a factor of
about 3 for the L2-norm, consistently with the difference in the size parameters of the two base meshes. Very
similar results (not shown) are obtained when the quasi-uniform base mesh is provided by changing the node
coordinates of an initial 8 · 8 · 2 regular partitioning along the x-direction instead of the y-direction, as
already mentioned at the beginning of the section. In both situations, the mesh family maintains triangle edges
that are aligned with the directions of anisotropy, but the symmetry of the diagonals is lost along one of the
coordinate directions. For this reason, we believe that the quality of the numerical results is increased by mesh
alignment reasons rather than by some effects of error cancellation due to grid symmetry. Finally, it is worth
noting that these results are much more satisfactory than the behavior observed in the stretched domain
(Fig. 5), where a stronger deterioration of the error constant due to locking is clearly visible. This shows that
accuracy in the discretization of the tangential components of the cell-interface gradients is of fundamental
importance for maintaining good performance.

4.2.3. Results on non-uniform meshes

The non-uniform mesh does not contain any special direction with respect to anisotropy, nor any peculiar
symmetry. The base grid is obtained by a constrained Delaunay triangulation algorithm with the additional
constraint that no angles greater than p/2 are present, so that the mesh regularity assumption is satisfied.
Except for the usual difference in the starting error due to the changing mesh size parameter, the behavior
of the scheme seems optimal only for Test Cases A and B. A strong locking effect is visible in Test Case C,
where not only an error constant deterioration appears, but also a severe loss of convergence rate occurs
as �! 10�6.

A tentative explanation of these results requires an in depth discussion of this test case. The differential
problem is in fact a Neumann problem and, thus, the corresponding operator is singular, the solution being
defined up to a constant. This is reflected by the discrete operator that is equipped with a non-trivial kernel. To
remove the singularity, we impose Dirichlet conditions on the top-right corner of the domain, as previously
described. Note that this is one of the commonest approaches for solving pure Neumann problems and,
for two-dimensional finite elements, is known to have only little influence on the condition number of the sys-
tem matrix [12]. Thus, we expect that the ill-conditioning of our linear system is mainly controlled by the con-
dition number of the diffusion tensor, i.e. the ratio 1/�. Since we are using a direct linear solver (Gaussian
elimination with partial pivoting [4]), ill-conditioning can be observed by monitoring the behavior of the solu-
tion residual norm with respect to 1/�. For this reason, in Table 2 we report the Euclidean norm of the
residuals
Rl ¼ sþ g � Guhl



Table 2
Non-uniform mesh

� R0 R2 R4 R6

1 8.43 · 10�13 9.17 · 10�13 7.09 · 10�12 7.95 · 10�12

10�2 5.79 · 10�11 7.85 · 10�11 1.76 · 10�10 5.78 · 10�10

10�4 3.83 · 10�9 5.29 · 10�9 5.66 · 10�9 2.82 · 10�8

10�6 2.54 · 10�7 3.46 · 10�7 4.36 · 10�7 4.06 · 10�7

Test Case C: final residuals Rl for the solution of the linear system (16); h0 is the mesh size parameter of the non-uniform base grid, and the
refined meshes at refinement levels l P 1 are characterized by hl+1 = hl/2.
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calculated with uhl , the solution of the linear algebraic system (16) approximating the ‘‘true’’ finite volume
solution uhl at the lth level of refinement characterized by a mesh size parameter hl.

Following the discussion reported in Refs. [5,20,21], we may postulate the existence of a threshold value for
the mesh size parameter below which the scheme converges optimally. In this work, we experimentally inves-
tigate the relationship between � and the threshold value of h, as hinted in their analysis of the asymptotic
behavior of the cool and hot state solutions to the model problem (16a)–(16c) presented in Ref. [21]. This type
of relationship suggests that the region of optimal convergence might be bounded by
Fig. 9.
mesh;
(dots),
h2
6 C�;
where C is a constant independent of h and �. Experimental evaluation and ‘‘definition’’ of this constant may
be problematic. For a confirmation of this behavior, we introduce a variant of the definition of region of

robustness given in Ref. [5], that applies to the present scheme. More precisely, let
R0 ¼ fðh; �Þjh 6 h0; 10�6
6 � 6 1g
be the space of parameters that contains the working values of � and h considered in our test cases. We will try
to identify the sub-region of R0 where the method performs reasonably well. This last statement is made more
precise by operatively defining the region where the convergence rates are greater than 1.9 as the region of
optimal behavior, and the region where the convergence rates are between 1.6 and 1.9 as the region of sub-
optimal behavior. If the convergence rate is less that 1.6 we consider our scheme to perform poorly, and when
the convergence rate is above this value we say that the scheme is robust. In practice, this definition is very
conservative, as in many applications convergence rates of about 1.5 are considered acceptable. In Fig. 9,
we report the L2-norm convergence rates that characterize the performance of the method for Test Case C
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Non-uniform mesh; Test Case C: experimental convergence rates within the region R0 for calculations using the non-uniform base
the continuous line represents the threshold curve � = h2; the other contour lines are interpolating the rate values 1.9 (dashes), 1.6
and 1.3 (dot-dashes).
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on non-uniform meshes. Every point of this figure represents a simulation run that was performed by using the
corresponding pair of parameter values (h,�) 2 R0. In this figure, we also draw the contour lines for rate values
of 1.3, 1.6, and 1.9, and the ‘‘theoretical threshold’’ � = h2. We should point it out that the correct location of
the threshold curve on this plot depends upon the knowledge of the value of the constant C, this latter being
dependent, in its turn, on the working definition of robustness. As the theoretical convergence analysis of the
method at this stage of the research is not yet available, we plot this curve just to give an indication of
the behavior that, we believe, is likely to be expected. However, it is an enlightening fact that the slopes of
the numerical contours are very close to the slope of the theoretical curve, showing that the hypothesized
behavior may be realistic.

5. Conclusions

We presented a second-order accurate cell-centered finite volume method, which is robust and reliable in
the solution of strongly anisotropic diffusion. The approximation method is based on an edge-centered piece-
wise constant definition of the solution gradients that properly takes into account both the normal and the
tangential components of the gradients in the formulation of the local flux balance equations. We reported
the results of numerical experiments on a set of benchmark problems of varying degree of difficulty, that test
the scheme performance under different anisotropy ratios and boundary conditions. The numerical results
show that optimal or sub-optimal performances are obtained for all test cases. Only in the problem having
exclusively Neumann boundary conditions the scheme revealed mesh locking phenomena for very small
anisotropy ratios. These results show the importance of a proper approximation of the tangential component
of the numerical gradients at cell interfaces. The presence of fully Neumann boundary conditions enhances the
difficulties introduced by anisotropy. For this last test case, we reported an experimental study of the region of
robustness of the proposed scheme. A quadratic relationship between anisotropy ratio and mesh size param-
eter was found. This shows that this finite volume scheme is robust and efficient in particular in the practical
range of anisotropy ratio 10�3–1 that is of interest in our applications.
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[18] E. Eymard, T. Gallouët, R. Herbin, A finite volume scheme for anisotropic diffusion problem, Comptes Rendus Acad. Sci.,
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[21] V. Havu, J. Pitkäranta, An analysis of finite element locking in a parameter dependent model problem, Numer. Math. 89 (4) (2001)

691–714, ISSN 0029-599X.
[22] F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, J. Comput. Phys. 160 (2000)

481–499.
[23] J. Hyman, M. Shashkov, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys. 129 (1997) 383–405.
[24] J. Hyman, M. Shashkov, S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic

materials, J. Comput. Phys. 132 (1997) 130–148.
[25] P.A. Jayantha, I.W. Turner, On the use of surface interpolation techniques in generalised finite volume strategies for simulating

transport in highly anisotropic porous media, J. Comput. Appl. Math. 152 (1–2) (2003) 199–216, ISSN 0377-0427.
[26] P.A. Jayantha, I.W. Turner, A second order finite volume technique for simulating transport in anisotropic media, Int. J. Numer.

Methods Heat Fluid Flow 13 (1) (2003) 31–56.
[27] P.A. Jayantha, I.W. Turner, A second order control-volume finite-element least-squares strategy for simulating diffusion in strongly

anisotropic media, J. Comput. Math. 23 (1) (2005) 1–16, ISSN 0254-9409.
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